OPTIMIZING THE OPERATION OF ACTIVATED SLUDGE WASTEWATER TREATMENT FACILITIES TO REMOVE NITROGEN & PHOSPHORUS

GRANT WEAVER, PE & WASTEWATER OPERATOR

WEBINAR MARCH 18, 2014

ww

www.cleanwaterops.com

Optimizing Activated Sludge Operations for N&P Removal

Upcoming Webinars

Sequenced Aeration: Montague, MA – April 15, 2014 Modifying Operations at Amherst, MA to avoid a \$61 million facility upgrade – May '14

<u>Today's Webinar</u> Nitrogen & Phosphorus Removal Fundamentals Habitat protection Optimizing conditions Comments, Questions & Answers

www.cleanwaterops.com

Biological Nitrogen Removal: Soluble organic-N is converted to <u>Nitrogen Gas</u>

Oxygen Rich Habitat

Ammonia-Nitrogen (NH₄) converts to Nitrate-Nitrogen (NO₃) NH₄ + oxygen \rightarrow NO₂ NO₂ + oxygen \rightarrow NO₃

Oxygen Poor Habitat

Nitrate-Nitrogen (NO₃) converts to Nitrogen Gas (N₂) NO₃ – oxygen \rightarrow N₂

Habitats: Biological Nitrogen Removal Aerobic - Ammonia (NH_4) conversion to Nitrate (NO_3)

Oxygen Rich Habitat

F:M of 0.12 or less; MLSS* of 2500+ mg/L (High Sludge Age, low F:M) ORP* of +100 to +150 mV (High DO) Time* (high HRT ... 24 hr, 12 hr, 6 hr, 4 hr) Low BOD

Consumes Oxygen Adds acid - Consumes 7 mg/L alkalinity per mg/L of $NH_4 \rightarrow NO_3$

*All numbers are approximate, each facility is different.

Habitats: Biological Nitrogen Removal Anoxic - Nitrate (NO₃) conversion to Nitrogen Gas (N₂)

Oxygen Poor Habitat

ORP* of -100 mV or less (DO < 0.3 mg/L) Surplus BOD* (100-250 mg/L: 5-10 times as much as NO₃) Retention Time* of 45-90 minutes

Gives back Oxygen Gives back Alkalinity (3.5 mg/L per mg/L of $NO_3 \rightarrow N_2$)

> *All numbers are approximate, each facility is different.

Biological Phosphorus Removal: Converting liquid phosphorus to <u>solid phosphorus</u>

Zero Oxygen Habitat (Fermentation)

Bacteria break down BOD to create volatile fatty acids (VFAs) Other bacteria (PAOs) take in the VFAs as an energy source and temporarily release more ortho-P into solution

Oxygen Rich Habitat (Aeration Tank)

PAO bacteria use the stored energy to "bulk up" on ortho-P

Phosphorus Removal: What an Operator needs to know

ONE. Convert soluble phosphorus to TSS ... Biologically Chemically

TWO. Remove TSS

Rules of Thumb:

0.05 mg/L of soluble phosphorus (ortho-P) remains after treatment Each 1 mg/L TSS contains up to 0.05 mg/L total-P (5%)

TSS Removal Requirements

Since all but 0.05 mg/L of the soluble Phosphorus can be converted to TSS Phosphorus (Biologically and/or Chemically)

And, because approximately 5% of Effluent TSS is Phosphorus

... To meet a total-P limit, the effluent TSS needs to be kept to the max TSS number shown in the table.

P Limit	max TSS
0.1	1
0.2	3
0.3	5
0.4	7
0.5	9
0.6	11
0.7	13
0.8	15
0.9	17
1.0	19
1.1	21
1.2	23
1.3	25
1.4	27
1.5	29

Creating Optimal Habitats

Dialing In Biological N&P Removal

Denitrifiers outcompete PAOs for volatile fatty acids (VFAs)

MLE Process

MLE Process

A/O Process

A/O Process

Why not both N&P Removal?

Fermentation Tank

Nitrogen Removal: Minimal NO₃ Removal Phosphorus Removal: VFA production PAO take up VFAs and release PO₄ Minimal competition from Denitrifying bacteria

Optimal Process Settings

<u>Anoxic Tank</u>

Nitrogen Removal:

7 N Nitrogen NO₃ conversion to N₂ Phosphorus Removal: NONE

Optimal Process Settings

Anoxic Tank

- \sim 2 hr HRT
- -100 mV ORP
- \sim 2 mg/L NO₃ exiting tank
- \dots 5-10 times as much BOD as NO₃

Aeration Tank

7 N Nitrogen Nitrogen Removal: NH_4 conversion to NO_3 Phosphorus Removal: PAOs take in PO_4

Optimal Process Settings

Aeration Tank

+100 mV ORP, ~2 mg/L DO >6.8 pH, >60 mg/L alkalinity <0.12 F:M (2500+ mg/L MLSS) <0.5 mg/L NH₄ <0.1 mg/L ortho-P

Mixed Liquor Recycle (Internal Recycle / Nitrate Recycle) Nitrogen Removal:

NO₃ return to Anoxic Tank DO damage Anoxic Tank habitat Too much flow shortens time in Anoxic and Aerobic Phosphorus Removal: NONE

Optimal Process Settings

Mixed Liquor Recycle (Internal Recycle / Nitrate Recycle)

The greater the flow, the more NO_3 returned for denitrification

The lower the flow:

the less damage to the Anoxic and Aerobic habitats & the longer the consecutive minutes in the Anoxic and Aerobic habitats

Secondary Clarifier

Nitrogen Removal:

7 Nitrogen Possible NH₄ release (not likely) Phosphorus Removal:

Possible PO₄ release (not likely)

Optimal Process Settings

Secondary Clarifier

Minimal sludge blankets Optimal levels of NH_4 , $NO_3 \& NO_2$ exiting tank Optimal levels of ortho-P and TSS exiting tank

Return Sludge (RAS)

7 Nitrogen Nitrogen Removal: Some NO_3 return to Fermentation Tank Phosphorus Removal: High DO may damage Fermentation habitat

Optimal Process Settings

Return Sludge (RAS)

Nitrogen Removal:

- Some NO₃ return to Fermentation Tank
- Phosphorus Removal:
 - High DO may damage Fermentation habitat

Summary

Biological phosphorus removal requires Volatile Fatty Acids as a fuel for PAOs – phosphate accumulating organisms.

Nitrate (NO₃) removing bacteria (denitrifiers) will outcompete PAOs for VFAs.

Understanding each habitat, monitoring, and controlling conditions allow for optimal N&P removal in plants design for N&P removal and in plants not designed for N&P removal.

Advantages to BNR are many:

- Filament control (selectors)
- Less sludge production (higher MLSS / lower F:M)
- Less electricity because of "free" BOD removal in Anoxic Tank Fewer chemicals

Experimentation can provide multi-million capital savings.

Making clean water affordable

www.cleanwaterops.com

Optimizing the Operation of Activated Sludge Wastewater Treatment Plants to Remove Nitrogen & Phosphorus

Grant Weaver, Your Presenter g.weaver@cleanwaterops.com

President The Water Planet Company

<u>Licensing</u> Professional Engineer

Wastewater Operator

Education

Massachusetts Institute of Technology (MIT): *Post-Graduate Studies in Environmental Toxicology* Oklahoma State University (OSU): *MS Bio-Environmental Engineering* Kansas State University (KSU): *BS Biology*

Thank You!

g.weaver@cleanwaterops.com

<u>Upcoming Webinars</u>

11 AM EST April 15th: Sequenced Aeration in Montague, Massachusetts Modifying Operations at Amherst, MA to avoid a \$61 million facility upgrade – May '14